مقاله ها
نویسنده : M. EFTEKHARI، M. J. ZOLGHADRI AND S. D. KATEBI
بازدید : 620

متن زیر چكیده می باشد، برای دریافت متن كامل مقاله بر روی فایل مقاله كلیك كنید

Abstract

 Designing an effective criterion for selecting the best rule is a major problem in the process of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidence and support or combined measures of these are used as criteria for fuzzy rule evaluation. In this paper new entities namely precision and recall from the field of Information Retrieval (IR) systems is adapted as alternative criteria for fuzzy rule evaluation. Several Different combinations of precision and recall are redesigned to produce a metric measure. These newly introduced criteria are utilized as a rule selection mechanism in the method of Iterative Rule Learning (IRL) of FLC. In several experiments، three standard datasets are used (0 compare and contrast the novel IR based criteria with other previously developed measures. Experimental results illustrate the effectiveness of the proposed techniques in terms of classification performance and computational efficiency


طراحی وب سایتفروشگاه اینترنتیطراحی فروشگاه اینترنتیسیستم مدیریت تعمیر و نگهداریسامانه تعمیر و نگهداری PM سامانه جمع آوری شناسنامه کامپیوتر سیستم جمع آوری شناسنامه کامپیوتر سیستم مدیریت کلان IT طراحی وب سایت آزانس املاک وب سایت مشاورین املاک طراحی پورتال سازمانی سامانه تجمیع پاساژ آنلاین پاساژ مجازی


نام : *

پیغام : *